1260 J-

from Eq. (8) in terms of ya or v, is at least approxi-
mately independent of volume and temperature.

One notes that Eq. (51) predicts a positive value of
dyo/dInv. On the basis of the Lindemann law, the
author has shown that the curvature of the fusion curve
can be normal in the sense of Bridgman only if y—3
~+dv/d InV is positive for the solid at fusion®; the sign
of the derivative implied by Eq. (51) thus is consistent
with this result. In a comparison with experiment of
a form of Simon’s semiempirical fusion equation
obtained theoretically, the author has determined
values of dln(y—3%)/dInV for the alkali metals.®
The values are positive, consistently with Eq. (51),
and are of the order implied by Eq. (56) for # and m
chosen to correspond to the Birch equation.

It can be noted that the generalized equation of state
obtained is concordant with, but is not restricted by,
the validity of Griineisen’s law. This conclusion follows
from the fact that the basic relation (17), to which the
generalized equation of state conforms, is a thermo-
dynamic identity independent of a model. For a metal
at sufficiently low temperature, Griineisen’s law fails
in the sense that the Griineisen parameter requires a
correction for the contribution of the electrons to the
thermal pressure®; for a similar reason, the law is
generally not valid for a superconductor. In neither
case should the generalization to arbitrary temperature
involved in Eq. (15) fail to be applicable within the
approximations made, if the form (4) is valid under
isothermal conditions.

V. COMPARISON WITH EXPERIMENTAL DATA

Results of Swenson?® for the compression of the alkali
metals at two temperatures (77 and 4.2°K) can be
used to compare predictions of the generalized Birch
equation with experiment. The element potassium will
be chosen for the check, since the corresponding values
of the parameter ¢ of the correction factor (5) vanish at
both temperatures.

Swenson expresses his results for the pressure as a
function of compression by tabulating values of the
density and the compressibility K¢ at zero pressure
for the two temperatures in question, which fix the
constants Vo (for unit mass) and K, of the isothermal
Birch equation as fitted to his data. The values of
the latter pair of constants corresponding to the former
are shown in the first two columns of Table I, for

TABLE 1. Parameters of the generalized Birch equation of state
for potassium, from data of Swenson.

T Vo Ko a 70a0
L4 cmi/g 104 atmos “C) (°C) n9
77 1.09, 3.38
0.00015 0.0003; 2.4
4.2 1.08: 3.47

% S, Visvanathan, Phys. Rev. 81, 626 (1951); J. J. Gilvarry,
Phys. Rev. 102, 317 (1956).
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potassium at the two temperatures. On Swenson’s
definitions, Vo and Ko depend on the temperature;
hence Vo and K represent values of U and X, respee-
tively, in the notation of this paper. The pressure for
potassium is shown in Iig. 1 as a function of the
relative compression (V—V)/U for the two tempera-
tures, as computed from the isothermal Birch equation
with constants from Table I.

The values of the parameters ao, 70, and 7y for
potassium are shown in the last three columns of
Table I, as implied by the constants in the first two
columns. Since these determinations correspond directly
to the data of Swenson, it is clear that values at the
two temperatures of ‘U and & from Egs. (27) and (32),
respectively, merely reproduce the values of V¥, and
K, in the first two columns of Table I. Thus, a sub-
stantive check of the generalized Birch equation cannot
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F1G. 1. Pressure as a function of the relative compression for
potassium, as computed from the isothermal Birch equation with
data from Table I, for comparison with data points at 77°K
predicted by the generalized Birch equation from values at 4.2°K.

be obtained directly, since its form with parameters
evaluated numerically for one of the two temperatures
is simply the isothermal form with constants equal to
those of Swenson.

However, Swenson tabulates smoothed experimental
data for potassium at one temperature, 4.2°K. An
independent check of the generalized Birch equation can
be obtained by using it to predict pressures at 77°K
from the tabular values for 4.2°K, given as a function
of (Vo—=V)/Vi[=(0—V)/V]. For a fixed value of
the last quantity, Eq. (15) states that P(7) is given in
terms of P(T) by

P(T)=[1—nwe(T—T0)JP(T). (38)

Use of this equation with values of parameters from
Table I to predict pressures at 77°K from those at
4.2°K yields excellent agreement with results from the
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